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An Effective PML for the Absorption
of Evanescent Waves in Waveguides

Jean-Pierre Brenger

Abstract—As emphasized by several authors in literature, the ~ For a general nonhomogeneous wave characterized by its
evanescent modes are not absorbed by usual perfectly matchedevanescence coefficienbsh y = (1+ sinh? X)1/2, traveling
'afy?qr.s (|p|v||_'§) terminating waveguiding Strfucrt]”"fasl\'ﬂzhﬁ pUIROSE i a direction forming an angle with the normal to a PML-
of this letter Is to present a new version of the that allows D having only longitudinal conductivities (side PML-D), the

a substantial absorption of such waves to be achieved. g . g ) ’
) . theory of numerical reflection yields the following reflection
Index Terms—Absorbing boundary conditions, FDTD method, coefficient R for a N-cell thick PML-D of conductivity

waveguide. profiles ¢, and oy:
I. INTRODUCTION R v
' 7(1/2) aC*(1/2)
HE absorption of evanescent waves at the end of waveg- M T(1) _ 0 1)
uides terminated by perfectly matched layers (PML’s) has : :
been addressed in several papers [1]-[3]. Although evanescent : i
papers [1]-[3] 9 T(N = 1/2) 0

waves in general are absorbed by PML'’s [4], in such problems
they are not absorbed, due to the fact that the direction where M is the tridiagonal matrix
evanescence is perpendicular to the vacuum—-PML interface, U C(0)

i.e., the direction of propagation is parallel to the interface.

The result is that the reflection is at best equal to the natural '
decrease in the PML thickness [1]. In this letter we show M =
that the modified PML defined in [5], denoted as PML-D,

allows a strong absorption of evanescent waves to be achieved,
resulting in an overall reflection far smaller than the reflection
corresponding to the natural decrease. and

Oy 1 ao(D)
—aC*(L+1L) 1 aC*(L+1)

—aC* (N -1) 1

a:%%, ¢ = cosh x cos ¢ — j sinh x sin ¢
X

Il. THE PML-D 1 WAL
The PML-D medium is obtained by means of splitting the U=1+ac(0) [ V1-5? _‘75}’ S = P

usual PML. Each subcomponent is split into two parts so that .
; i V=-1 C(0)|v1-524+48
different conductivities denoted by, ands;, can be assigned +ad( )[ +J }

to each part. For exampléq., is split into H.,, and H.,. (L) = PaBa(L)

In three dimensions (3-D), there are 24 subcomponents in the' ’ e/« (At/2) _ A, (L)e—d«(At/2)

PML-D. The two-dimensional (2-D) equations are given in By (L)

[5]. The extension to 3-D is straightforward. The parameters + eiw(At/2) — A (L)e—i=(At/2)

that define the medium (see [5]) are the splitting parameters [1— Au(L)e

pe andp, (With p, + p, = 1), and the ratio of the profiles of A, (L) =el==(Mat/=] - p (L) = = — 20
conductivitys, anda,. This ratios = ¢, /o, must be set to a ou(L)At

large value § > 10) to obtain interesting properties (§f= 1, System (1) of2N equations an@N unknowns R andT’
PML-D reduces to PML). guantities) can be solved recursively fBr L is the index of

In theory, the properties of PML-D are quite close to thoghe mesh [ = 0 in the interface).Az and At are the space
of PML: no reflection from interfaces, no absorption of waveand time steps. Quantiti€s* are asC with * andy, in place
whose propagation is parallel to the interface. In practicef o ande,. A and B are for an exponential finite-difference
this medium reduces the numerical reflection in interactidime-domain (FDTD) differencing. In waveguide calculations,
problems [5]. We will see below that PML-D can also act ag = 7/2 (propagation parallel to the PML-D) angsh y is
a numerical absorber of evanescent waves whose evanescgnen by the mode that is considered.
is perpendicular to the PML.
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Fig. 1. PML/PML-D comparison.
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f. is a PML parameter, not the waveguide cutoff). Similarly,
with PML-D the reflection is strong below., = 7,(0)/2¢,.

shows reflection? computed by (1) for 12-cell PML’s and Using geometrical profiles inst_ead_of parabolic profﬁl¢§,

PML-D’s having either parabolic or geometrical profiles of;m(;I f‘:i’ are ffar smal_ler, fs‘."“ﬂg n a smallbrleflecn(én L:]p
conductivity. The PML's are denoted as in [6]. The theoretickp far lower frequencies. As in interaction problems [6], the
reflectionR(0) of every PML equals 1%. With PML-D’SR(0) geometrical conductivity is the best profile when dealing with

is calculated as with PML's [6], but using, instead ofg. €vanescent waves with PML or PML-D. _ _
Fig. 1 also shows FDTD results validatidg from (1). Fig. 2 illustrates the effect of parametgr,. By increasing

Contrary to PML’s, PML-D’s allowR to be far smaller the PML-D thickness, the frequenc., is reduced, so that
than the natural decrease of evanescent waves, especially Wigh humerical reflection is shifted toward lower frequencies.
the geometrical conductivity. PML-D also widely reduce&ig. 3 shows that the reflection from PML-D inner interfaces
the reflection of traveling waves. Only a narrow band dfan be reduced abovg, by reducing the ratig. This figure
frequencies is reflected around the waveguide cutoff. The d#lso shows that the reflection from the vacuum-PML interface
ference between parabolic and geometrical conductivities cd@creases approximately Bsf abovef.,, as can be predicted
be explained by considering frequencigsand f., in Fig. 1. by theory. In consequence, to achieve a given refleckidan
As known [4], the strongly evanescent waves are reflected applications,f., will have to be set sufficiently far from the
PML's below cutoff frequencyf, = o¢(0)/2rs, wherecs(0) lowest frequency of interest.

Fig. 2. Effect of the frequency.a.
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With the intention of achieving a desirgdlin a given band Actually, in terms of ratio cost/efficiency, PML-D is probably
of frequencies, by using (1) the key parametdrs and ¢ far better than the normal PML in all the problems involving
can be optimized so that the PML-D thickness is minimunmonhomogeneous waves whose direction of propagation is
This is illustrated by Fig. 4 that shows the PML-D’s givingparallel, or almost parallel, to the vacuum—-PML interface.
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